客户参与度、依赖度和忠诚度:中国客户多点触控服务体验的实证研究

本文源引自《技术预测与社会变革》2023年12月文章,由西南财经大学陈鑫副教授、纽约城市大学郭硕嘉副教授、ESSCA管理学院熊杰副教授、华中科技大学叶竹新副教授联名发表。论文采用中英双语排版,由ImmersiveTranslate提供翻译支持。

 

正文:

Highlights 强调

  • Customer engagement in a multi-actor service encounter should be a multiple interactive concept.
    多参与者服务体验中的客户参与应该是一个多重交互的概念。

  • Customer-perceived dependence in B2C service context can be divided into relationship-value based and switching-cost based.
    B2C服务环境中客户感知的依赖可以分为基于关系价值和基于转换成本的依赖。

  • Service technology plays a crucial role in fostering customer loyalty through customer-perceived dependence.
    服务技术在通过客户感知的依赖来培养客户忠诚度方面发挥着至关重要的作用。

  • Customer-customer interaction reduces other multi-interactions but negatively moderates customer-perceived dependence.
    客户与客户的互动减少了其他多重互动,但对客户感知的依赖性产生了负面影响。

Abstract 摘要

The existing literature emphasizes the importance of customer engagement and customer dependence in service encounters. An essential and typical manifestation of customer engagement is the interaction between customers and service scene elements. However, previous studies have mainly focused on the interactions between customers and service providers, neglecting multiactor service encounters. With rapid technological advancements in recent decades, network-based interactions involving multiple actors have become prevalent. However, our understanding of how such interactions affect customer loyalty in multiactor service encounters is limited. Therefore, this study aims to investigate how customer-provider interactions, namely customer-employee, customer-technology, and customer-physical environment interactions, contribute to customer-perceived dependence and loyalty. We developed a research model based on motivation theory and analyzed survey data from 410 commercial bank customers in China. Our results show that technology plays a crucial role in fostering customer loyalty through both benefit-based and switching cost-based dependence, whereas employees primarily influence loyalty through customer dependence on relational benefits. This study contributes to the literature on the interactive nature of customer engagement and dependence by providing valuable insight for practitioners who manage service encounters.
现有文献强调客户参与和客户依赖在服务接触中的重要性。顾客参与的一个本质且典型的体现是顾客与服务场景元素之间的互动。然而,之前的研究主要集中在客户和服务提供商之间的交互,忽略了多角色服务遭遇。随着近几十年来技术的快速进步,涉及多个参与者的基于网络的交互已经变得普遍。然而,我们对这种交互如何影响多参与者服务体验中的客户忠诚度的理解是有限的。因此,本研究旨在调查客户与提供商的互动,即客户与员工、客户与技术以及客户与物理环境的互动,如何促进客户感知的依赖和忠诚度。我们开发了一个基于动机理论的研究模型,并分析了来自中国 410 家商业银行客户的调查数据。我们的研究结果表明,技术通过基于利益的依赖和基于转换成本的依赖在培养客户忠诚度方面发挥着至关重要的作用,而员工主要通过客户对关系利益的依赖来影响忠诚度。这项研究为管理服务体验的从业者提供了宝贵的见解,为有关客户参与和依赖的互动性质的文献做出了贡献。

Introduction 介绍

Customer loyalty has been a long-standing focus for researchers given its crucial significance and integral role in the success of service encounters (Balaji, 2015; Envelope et al., 2021; Hollebeek et al., 2023a, Hollebeek et al., 2023b). To gain a better understanding of customer loyalty, scholars have analyzed influential factors such as marketing strategy, service-dominant logic, and customer and service provider relationships (Vargo and Lusch, 2004; Vargo and Lusch, 2016; Khan et al., 2022). However, in the rapidly evolving digital economy, customer needs and preferences are changing at an unprecedented pace, driven by technological advancements (Hollebeek et al., 2021a, Hollebeek et al., 2021b; Rosenbaum et al., 2022). The rise of digital technologies, such as smartphone apps, intelligent agents, self-serving technologies, and the Internet of Things, has transformed the customer-provider relationship from a dyadic interaction pattern to a network-based interaction model involving multiple actors (Luangrath et al., 2022; Zhang and Chang, 2021; Hollebeek et al., 2022a, Hollebeek et al., 2022b). This new multi-actor service encounter is consistent with the concept of the “service encounter 2.0” (Larivière et al., 2017), which aims to redefine the role of the service employee as an “enabler, innovator, coordinator, and differentiator.” Thus, the roles of the different participants in a many-to-many service process are interdependent, resulting in complex service contexts. To address this complexity, this study examined the factors that contribute to customer loyalty in multi-actor service encounters, including customer-employee, customer-technology, and customer-physical environment interactions. By doing so, we hope to provide insights that can help service providers manage these interactions effectively and enhance customer loyalty.
客户忠诚度长期以来一直是研究人员关注的焦点,因为它在服务接触的成功中具有至关重要的意义和不可或缺的作用(Balaji,2015;Envelope 等人,2021;Hollebeek 等人,2023a;Hollebeek 等人,2023b) 。为了更好地理解客户忠诚度,学者们分析了营销策略、服务主导逻辑、客户与服务提供商关系等影响因素(Vargo and Lusch,2004;Vargo and Lusch,2016;Khan et al.,2022) 。然而,在快速发展的数字经济中,在技术进步的推动下,客户需求和偏好正在以前所未有的速度发生变化(Hollebeek 等,2021a;Hollebeek 等,2021b;Rosenbaum 等,2022)。智能手机应用程序、智能代理、自助技术和物联网等数字技术的兴起,已将客户与提供商的关系从二元交互模式转变为涉及多个参与者的基于网络的交互模式(Luangrath 等)等人,2022;Zhang 和 Chang,2021;Hollebeek 等人,2022a;Hollebeek 等人,2022b)。这种新的多主体服务遭遇与“服务遭遇2.0”的概念一致(Larivière et al., 2017),旨在将服务员工的角色重新定义为“推动者、创新者、协调者和差异化者”。 ”因此,多对多服务流程中不同参与者的角色是相互依赖的,从而导致复杂的服务上下文。为了解决这种复杂性,本研究研究了多参与者服务体验中有助于提高客户忠诚度的因素,包括客户与员工、客户与技术以及客户与物理环境的交互。 通过这样做,我们希望提供能够帮助服务提供商有效管理这些交互并提高客户忠诚度的见解。

Current service encounters extend beyond dyadic service interactions (Alexander et al., 2018), yet research on the broader context in which individuals operate and interact remains largely overlooked. Recent studies have called for further investigation of customer engagement in service ecosystems from a broader scope, incorporating networked actors and multiple recurring dyadic, triadic, and other interactions (e.g., Tuguinay et al., 2022; Habib et al., 2022; Saura et al., 2021; Storbacka et al., 2016). The rise of the service economy has led to the emergence of service ecosystems, in which customer loyalty is retained through network-based interactions with multiple actors (Barbosa et al., 2022; Hollebeek et al., 2021a, Hollebeek et al., 2021b). Service providers such as Apple in the United States and Xiaomi in China have utilized firm-specific resources to build their service ecosystems. According to the resource-based view (Barney, 1991), business firms can use scarce and valuable resources to build sustainable competitive advantages, which, in turn, promote customers’ perceptions of dependence and influence their subsequent consumption behaviors. From the service ecosystem perspective, a better understanding of the role of multi-actor customer-provider interactions in customer dependence is required to determine how service providers can benefit from customer consumption behaviors, ultimately contributing to customer loyalty.
当前的服务遭遇超出了二元服务交互的范畴(Alexander et al., 2018),但对个人操作和交互的更广泛背景的研究仍然在很大程度上被忽视。最近的研究呼吁从更广泛的范围进一步调查客户在服务生态系统中的参与度,纳入网络参与者和多重重复的二元、三元和其他交互(例如,Tuguinay 等人,2022 年;Habib 等人,2022 年;Saura 等人)等人,2021 年;Storbacka 等人,2016 年)。服务经济的兴起导致了服务生态系统的出现,其中通过与多个参与者基于网络的交互来保持客户忠诚度(Barbosa 等人,2022;Hollebeek 等人,2021a;Hollebeek 等人,2021b) )。美国苹果、中国小米等服务提供商利用企业特有资源构建服务生态系统。根据资源基础观(Barney,1991),企业可以利用稀缺而宝贵的资源来建立可持续的竞争优势,进而促进顾客的依赖感并影响其后续的消费行为。从服务生态系统的角度来看,需要更好地理解多参与者的客户-提供商交互在客户依赖中的作用,以确定服务提供商如何从客户消费行为中受益,最终有助于客户忠诚度。

Therefore, the current study aims to explore how multi-actor customer-provider interactions may contribute to customer loyalty, subject to customer-perceived dependence. Drawing on motivation theory, we examine how such interactions in multi-actor service encounters influence customer-perceived dependence, which we consider a precursor to customer behavioral intentions that generate loyalty. Rather than viewing customer loyalty as an independent behavioral or emotional inclination, we use dependence as a good indicator of customer loyalty. Through structural equation modelling (SEM) analysis of survey data from 410 commercial bank customers in China, our empirical findings indicate that customer-provider interactions result in two distinct forms of dependence, relationship-value driven dependence and switching-cost motivated dependence, leading to an asymmetrical effect on customer loyalty.
因此,当前的研究旨在探讨多参与者的客户-提供商互动如何在客户感知依赖的情况下有助于提高客户忠诚度。借鉴动机理论,我们研究了多参与者服务遭遇中的此类交互如何影响客户感知的依赖,我们认为这是产生忠诚度的客户行为意图的先兆。我们没有将客户忠诚度视为一种独立的行为或情感倾向,而是使用依赖性作为客户忠诚度的良好指标。通过对中国 410 家商业银行客户的调查数据进行结构方程模型 (SEM) 分析,我们的实证结果表明,客户与提供商的互动会导致两种不同形式的依赖:关系价值驱动的依赖和转换成本驱动的依赖,从而导致对客户忠诚度的不对称影响。

This study makes several contributions. First, while dependence has been extensively studied in inter-organizational and interpersonal contexts, it has received limited attention in the personal-firm setting (Scheer et al., 2015). Given the increasing prominence of dependence in the B2C service context, it is essential to investigate whether and how customer-perceived dependence based on various forms of service interaction is related to customer loyalty. To address this research gap, we developed a theoretical model based on motivation theory that integrates customer-perceived dependence. More importantly, we distinguish between the two internal dimensions of the dependence structure: relationship-value driven dependence and switching-cost motivated dependence. We investigate the potentially contrasting effects of these two types of dependence on customer loyalty in multiple interaction contexts (Scheer et al., 2015; Wang et al., 2017).
这项研究做出了多项贡献。首先,虽然依赖性在组织间和人际环境中得到了广泛的研究,但它在个人-公司环境中受到的关注有限(Scheer 等,2015)。鉴于 B2C 服务环境中的依赖性日益突出,有必要研究基于各种形式的服务交互的客户感知依赖性是否以及如何与客户忠诚度相关。为了解决这一研究空白,我们开发了一个基于动机理论的理论模型,该模型集成了客户感知的依赖。更重要的是,我们区分了依赖结构的两个内部维度:关系价值驱动的依赖和转换成本驱动的依赖。我们研究了在多种交互环境中这两种类型对客户忠诚度的依赖的潜在对比影响(Scheer 等人,2015 年;Wang 等人,2017 年)。

Second, few scholars have discussed service interactions in terms of engagement nature between customers and service providers from a holistic perspective. Previous studies have predominantly examined customer loyalty in service contexts at the micro level and have indicated a positive influence of the dyadic interaction between customers and specific focal objects (such as brands and employees). This study examined customer interaction through a broader scope in multiple dimensions as well as its diverging effects across different dependence mechanisms that influence customer loyalty. Beyond dyadic interaction, this study investigates the many-to-many relationship in customer-provider interactions and examines its potential influence on customer loyalty. Such a holistic analysis deepens our understanding of customer engagement in multi-actor service contexts and enriches customer loyalty literature.
其次,很少有学者从整体角度讨论客户和服务提供商之间的参与性质的服务交互。先前的研究主要在微观层面考察服务环境中的客户忠诚度,并表明客户与特定焦点对象(例如品牌和员工)之间的二元互动具有积极影响。这项研究通过多个维度更广泛的范围考察了客户互动,以及影响客户忠诚度的不同依赖机制的不同影响。除了二元交互之外,本研究还调查了客户与提供商交互中的多对多关系,并探讨了其对客户忠诚度的潜在影响。这种整体分析加深了我们对多参与者服务环境中客户参与的理解,并丰富了客户忠诚度文献。

Finally, this study contributes to the literature by examining how the interaction between a focal customer and other customers can significantly affect their dependence on a service provider. By providing empirical evidence, we extend the theoretical framework to include mediating and moderating conditions that govern customer loyalty through multi-actor interactions in service encounters. Based on the analysis of survey data from commercial bank customers in China, we provide new insight for service providers in emerging markets.
最后,本研究通过研究焦点客户和其他客户之间的互动如何显着影响他们对服务提供商的依赖,为文献做出了贡献。通过提供经验证据,我们扩展了理论框架,包括通过服务遭遇中的多参与者互动来调节和调节客户忠诚度的条件。基于对中国商业银行客户调查数据的分析,我们为新兴市场的服务提供商提供新的见解。

Section snippets 章节片段

Customer engagement 客户参与度

Customer engagement has always gained significant attention in the marketing literature, particularly because of the advent of digital technologies that enable brands to interact with customers and create personalized experiences at scale (Hollebeek et al., 2022a, Hollebeek et al., 2022b). In the field of service value co-creation, consumer engagement represents an inherently interactive concept that transpires during the consumer’s interactions with a service provider or relevant firm-related
客户参与一直在营销文献中受到广泛关注,特别是因为数字技术的出现使品牌能够与客户互动并大规模创造个性化体验(Hollebeek 等人,2022a;Hollebeek 等人,2022b)。在服务价值共创领域,消费者参与代表了一种固有的互动概念,这种概念是在消费者与服务提供商或相关公司相关的互动过程中发生的。

Customer-physical environment interaction (CPEI) and customer-perceived dependence
客户-物理环境交互(CPEI)和客户感知的依赖

Services are essentially intangible processes. Thus, customers may frequently search for surrogates or “cues” in the physical environment to help them determine the service provider’s capabilities. Tangible information in the physical environment can provide informational benefits to customers and enhance their sense of service value (Islam and Rahman, 2016). These tangible elements may also gradually become the irreplaceable resource customers are locked into, which they cannot abandon or to
服务本质上是无形的过程。因此,客户可能会频繁地在物理环境中寻找替代物或“线索”,以帮助他们确定服务提供商的能力。物理环境中的有形信息可以为客户提供信息效益,增强他们的服务价值感(Islam 和 Rahman,2016)。这些有形元素也可能逐渐成为客户锁定的不可替代的资源,无法放弃或放弃。

Sample and data collection
样本和数据收集

We randomly recruited 420 respondents through an online survey agency (www.51diaocha.cn) in Mainland China and collected data using an online questionnaire. Participants took part of were all of their own free will, and there were no selection conditions. Random sampling was applied by randomly placing the questionnaires in the sample bank with no restrictions. When respondents started with the questionnaire, they were asked to write down the commercial bank they most commonly used, recall
我们通过中国大陆的在线调查机构(www.51diaocha.cn)随机招募了 420 名受访者,并通过在线问卷收集数据。参加者都是自愿参加的,没有选拔条件。随机抽样是指将问卷随机放入样本库,不受任何限制。当受访者开始填写调查问卷时,他们被要求写下他们最常用的商业银行,回忆一下

Validity and reliability 有效性和可靠性

Before testing our hypotheses, the reliability and validity of the results were addressed. First, the reliability of the scales was measured using Cronbach’s alpha and composite reliability (CR). As summarized in Table 2, all Cronbach’s alpha values range from 0.747 to 0.888, and all CR values range from 0.86 to 0.92, which indicates adequate reliability of our measurement scales.
在检验我们的假设之前,我们先讨论了结果的可靠性和有效性。首先,使用 Cronbach’s alpha 和复合信度 (CR) 测量量表的信度。如表 2 所示,所有 Cronbach’s α 值范围为 0.747 至 0.888,所有 CR 值范围为 0.86 至 0.92,这表明我们的测量量表具有足够的可靠性。

Second, we used the maximum likelihood approach in CFA to evaluate the convergent validity of each measurement
其次,我们使用 CFA 中的最大似然法来评估每个测量的收敛有效性

Conclusion 结论

Established studies show that emerging information technologies empower individual customers to increase their flexibility and engagement in business interactions and practices (Zhang and Chang, 2021; Khan et al., 2022). Understanding multiactor interactions in service encounters will benefit service providers through actions designed to promote customer loyalty and restore positive relationships with customers (Alexander et al., 2018). In the current study, we propose a conceptual framework
既定研究表明,新兴信息技术使个人客户能够提高业务互动和实践的灵活性和参与度(Zhang 和 Chang,2021;Khan 等人,2022)。了解服务接触中的多角色交互将通过旨在提高客户忠诚度并恢复与客户的积极关系的行动使服务提供商受益(Alexander 等人,2018)。在当前的研究中,我们提出了一个概念框架。

Previous 2024年2月29日 下午2:16
Next 2024年2月29日 下午3:47

相关推荐

  • 客户理解:协调研究的深度和广度(对定性和定量研究的深入解析)

    本文源引自全球顶级客户服务和体验专家Tobias Komischke博士在2024年2月12日发表的文章,采用中英双语排版,由ImmersiveTranslate提供翻译支持。   Lifetime customer value starts way before selling a product or service. 终身客户价值早在销售产品…

    2024年2月19日
  • 消费者为何在直播中出现冲动购买行为:主播的角色

    本文源引自<BMC Psychology>在2024年3月6日的刊文,采用中英双语排版,由ImmersiveTranslate提供翻译支持。 作者:四川农业大学商贸旅游学院李晓琳/黄敦虎/董国锋、英国雷丁大学亨利商学院信息学研究中心王兵 Abstract 摘要 To explore the influencing factors of consu…

    2024年3月8日
  • 通过客户反馈驱动的决策来发展业务的 5 种方法

    本文源引自Crunchbase特约作者Ivan Saprov在2024年3月9日发表的文章,采用中英双语排版,由ImmersiveTranslate提供翻译支持。 As entrepreneurs, we depend on the feedback of our customers. If they like our product or service,…

    2024年3月12日
  • 基于 S-O-R 的体验框架,衡量零售门店的客户满意度

    本文源引自《零售与消费者服务》杂志2024年3月文章,由马来西亚国家石油大学Amjad Shamim博士、Muhammad Farrukh Abid 和巴基斯坦拉瓦尔品第法蒂玛真纳女子大学Farooq Ahmad博士联名发表。论文采用中英双语排版,由ImmersiveTranslate提供翻译支持。 正文: Abstract 摘要 Past studies …

    2024年2月29日
  • 如何实现世界级的CSAT客户满意度管理?

    1.前言 如今的存量客户时代,企业在客户满意度管理上的差异化比以往任何时候都更具有商业优势。国内目前将客户满意度管理作为核心运营策略的企业屈指可数,对于我们而言,也许客户满意度可以使一个品牌脱颖而出,并赋予它无与伦比的竞争优势。 在高价值交易行业(如专业服务、中高端零售、金融、汽车等行业),让客户满意的服务是销售的重要推动因素。考虑到它最终只占成本的一小部分…

    2024年2月18日

联系我们

021-31011810

邮件:marketing@diact.com

工作时间:周一至周五,9:00-18:30,节假日休息

关注微信